dyaml/source/dyaml/constructor.d

612 lines
19 KiB
D

// Copyright Ferdinand Majerech 2011.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
/**
* Class that processes YAML mappings, sequences and scalars into nodes.
* This can be used to add custom data types. A tutorial can be found
* $(LINK2 https://dlang-community.github.io/D-YAML/, here).
*/
module dyaml.constructor;
import std.array;
import std.algorithm;
import std.base64;
import std.container;
import std.conv;
import std.datetime;
import std.exception;
import std.regex;
import std.string;
import std.typecons;
import std.utf;
import dyaml.node;
import dyaml.exception;
import dyaml.style;
package:
// Exception thrown at constructor errors.
class ConstructorException : YAMLException
{
/// Construct a ConstructorException.
///
/// Params: msg = Error message.
/// start = Start position of the error context.
/// end = End position of the error context.
this(string msg, Mark start, Mark end, string file = __FILE__, size_t line = __LINE__)
@safe pure nothrow
{
super(msg ~ "\nstart: " ~ start.toString() ~ "\nend: " ~ end.toString(),
file, line);
}
}
/** Constructs YAML values.
*
* Each YAML scalar, sequence or mapping has a tag specifying its data type.
* Constructor uses user-specifyable functions to create a node of desired
* data type from a scalar, sequence or mapping.
*
*
* Each of these functions is associated with a tag, and can process either
* a scalar, a sequence, or a mapping. The constructor passes each value to
* the function with corresponding tag, which then returns the resulting value
* that can be stored in a node.
*
* If a tag is detected with no known constructor function, it is considered an error.
*/
/*
* Construct a node.
*
* Params: start = Start position of the node.
* end = End position of the node.
* tag = Tag (data type) of the node.
* value = Value to construct node from (string, nodes or pairs).
* style = Style of the node (scalar or collection style).
*
* Returns: Constructed node.
*/
Node constructNode(T)(const Mark start, const Mark end, const string tag,
T value) @safe
if((is(T : string) || is(T == Node[]) || is(T == Node.Pair[])))
{
Node newNode;
try
{
switch(tag)
{
case "tag:yaml.org,2002:null":
newNode = Node(YAMLNull(), tag);
break;
case "tag:yaml.org,2002:bool":
static if(is(T == string))
{
newNode = Node(constructBool(value), tag);
break;
}
else throw new Exception("Only scalars can be bools");
case "tag:yaml.org,2002:int":
static if(is(T == string))
{
newNode = Node(constructLong(value), tag);
break;
}
else throw new Exception("Only scalars can be ints");
case "tag:yaml.org,2002:float":
static if(is(T == string))
{
newNode = Node(constructReal(value), tag);
break;
}
else throw new Exception("Only scalars can be floats");
case "tag:yaml.org,2002:binary":
static if(is(T == string))
{
newNode = Node(constructBinary(value), tag);
break;
}
else throw new Exception("Only scalars can be binary data");
case "tag:yaml.org,2002:timestamp":
static if(is(T == string))
{
newNode = Node(constructTimestamp(value), tag);
break;
}
else throw new Exception("Only scalars can be timestamps");
case "tag:yaml.org,2002:str":
static if(is(T == string))
{
newNode = Node(constructString(value), tag);
break;
}
else throw new Exception("Only scalars can be strings");
case "tag:yaml.org,2002:value":
static if(is(T == string))
{
newNode = Node(constructString(value), tag);
break;
}
else throw new Exception("Only scalars can be values");
case "tag:yaml.org,2002:omap":
static if(is(T == Node[]))
{
newNode = Node(constructOrderedMap(value), tag);
break;
}
else throw new Exception("Only sequences can be ordered maps");
case "tag:yaml.org,2002:pairs":
static if(is(T == Node[]))
{
newNode = Node(constructPairs(value), tag);
break;
}
else throw new Exception("Only sequences can be pairs");
case "tag:yaml.org,2002:set":
static if(is(T == Node.Pair[]))
{
newNode = Node(constructSet(value), tag);
break;
}
else throw new Exception("Only mappings can be sets");
case "tag:yaml.org,2002:seq":
static if(is(T == Node[]))
{
newNode = Node(constructSequence(value), tag);
break;
}
else throw new Exception("Only sequences can be sequences");
case "tag:yaml.org,2002:map":
static if(is(T == Node.Pair[]))
{
newNode = Node(constructMap(value), tag);
break;
}
else throw new Exception("Only mappings can be maps");
case "tag:yaml.org,2002:merge":
newNode = Node(YAMLMerge(), tag);
break;
default:
newNode = Node(value, tag);
break;
}
}
catch(Exception e)
{
throw new ConstructorException("Error constructing " ~ typeid(T).toString()
~ ":\n" ~ e.msg, start, end);
}
newNode.startMark_ = start;
return newNode;
}
private:
// Construct a boolean _node.
bool constructBool(const string str) @safe
{
string value = str.toLower();
if(value.among!("yes", "true", "on")){return true;}
if(value.among!("no", "false", "off")){return false;}
throw new Exception("Unable to parse boolean value: " ~ value);
}
// Construct an integer (long) _node.
long constructLong(const string str) @safe
{
string value = str.replace("_", "");
const char c = value[0];
const long sign = c != '-' ? 1 : -1;
if(c == '-' || c == '+')
{
value = value[1 .. $];
}
enforce(value != "", new Exception("Unable to parse float value: " ~ value));
long result;
try
{
//Zero.
if(value == "0") {result = cast(long)0;}
//Binary.
else if(value.startsWith("0b")){result = sign * to!int(value[2 .. $], 2);}
//Hexadecimal.
else if(value.startsWith("0x")){result = sign * to!int(value[2 .. $], 16);}
//Octal.
else if(value[0] == '0') {result = sign * to!int(value, 8);}
//Sexagesimal.
else if(value.canFind(":"))
{
long val;
long base = 1;
foreach_reverse(digit; value.split(":"))
{
val += to!long(digit) * base;
base *= 60;
}
result = sign * val;
}
//Decimal.
else{result = sign * to!long(value);}
}
catch(ConvException e)
{
throw new Exception("Unable to parse integer value: " ~ value);
}
return result;
}
@safe unittest
{
string canonical = "685230";
string decimal = "+685_230";
string octal = "02472256";
string hexadecimal = "0x_0A_74_AE";
string binary = "0b1010_0111_0100_1010_1110";
string sexagesimal = "190:20:30";
assert(685230 == constructLong(canonical));
assert(685230 == constructLong(decimal));
assert(685230 == constructLong(octal));
assert(685230 == constructLong(hexadecimal));
assert(685230 == constructLong(binary));
assert(685230 == constructLong(sexagesimal));
}
// Construct a floating point (real) _node.
real constructReal(const string str) @safe
{
string value = str.replace("_", "").toLower();
const char c = value[0];
const real sign = c != '-' ? 1.0 : -1.0;
if(c == '-' || c == '+')
{
value = value[1 .. $];
}
enforce(value != "" && value != "nan" && value != "inf" && value != "-inf",
new Exception("Unable to parse float value: " ~ value));
real result;
try
{
//Infinity.
if (value == ".inf"){result = sign * real.infinity;}
//Not a Number.
else if(value == ".nan"){result = real.nan;}
//Sexagesimal.
else if(value.canFind(":"))
{
real val = 0.0;
real base = 1.0;
foreach_reverse(digit; value.split(":"))
{
val += to!real(digit) * base;
base *= 60.0;
}
result = sign * val;
}
//Plain floating point.
else{result = sign * to!real(value);}
}
catch(ConvException e)
{
throw new Exception("Unable to parse float value: \"" ~ value ~ "\"");
}
return result;
}
@safe unittest
{
bool eq(real a, real b, real epsilon = 0.2) @safe
{
return a >= (b - epsilon) && a <= (b + epsilon);
}
string canonical = "6.8523015e+5";
string exponential = "685.230_15e+03";
string fixed = "685_230.15";
string sexagesimal = "190:20:30.15";
string negativeInf = "-.inf";
string NaN = ".NaN";
assert(eq(685230.15, constructReal(canonical)));
assert(eq(685230.15, constructReal(exponential)));
assert(eq(685230.15, constructReal(fixed)));
assert(eq(685230.15, constructReal(sexagesimal)));
assert(eq(-real.infinity, constructReal(negativeInf)));
assert(to!string(constructReal(NaN)) == "nan");
}
// Construct a binary (base64) _node.
ubyte[] constructBinary(const string value) @safe
{
import std.ascii : newline;
import std.array : array;
// For an unknown reason, this must be nested to work (compiler bug?).
try
{
return Base64.decode(value.representation.filter!(c => !newline.canFind(c)).array);
}
catch(Base64Exception e)
{
throw new Exception("Unable to decode base64 value: " ~ e.msg);
}
}
@safe unittest
{
auto test = "The Answer: 42".representation;
char[] buffer;
buffer.length = 256;
string input = Base64.encode(test, buffer).idup;
const value = constructBinary(input);
assert(value == test);
assert(value == [84, 104, 101, 32, 65, 110, 115, 119, 101, 114, 58, 32, 52, 50]);
}
// Construct a timestamp (SysTime) _node.
SysTime constructTimestamp(const string str) @safe
{
string value = str;
auto YMDRegexp = regex("^([0-9][0-9][0-9][0-9])-([0-9][0-9]?)-([0-9][0-9]?)");
auto HMSRegexp = regex("^[Tt \t]+([0-9][0-9]?):([0-9][0-9]):([0-9][0-9])(\\.[0-9]*)?");
auto TZRegexp = regex("^[ \t]*Z|([-+][0-9][0-9]?)(:[0-9][0-9])?");
try
{
// First, get year, month and day.
auto matches = match(value, YMDRegexp);
enforce(!matches.empty,
new Exception("Unable to parse timestamp value: " ~ value));
auto captures = matches.front.captures;
const year = to!int(captures[1]);
const month = to!int(captures[2]);
const day = to!int(captures[3]);
// If available, get hour, minute, second and fraction, if present.
value = matches.front.post;
matches = match(value, HMSRegexp);
if(matches.empty)
{
return SysTime(DateTime(year, month, day), UTC());
}
captures = matches.front.captures;
const hour = to!int(captures[1]);
const minute = to!int(captures[2]);
const second = to!int(captures[3]);
const hectonanosecond = cast(int)(to!real("0" ~ captures[4]) * 10_000_000);
// If available, get timezone.
value = matches.front.post;
matches = match(value, TZRegexp);
if(matches.empty || matches.front.captures[0] == "Z")
{
// No timezone.
return SysTime(DateTime(year, month, day, hour, minute, second),
hectonanosecond.dur!"hnsecs", UTC());
}
// We have a timezone, so parse it.
captures = matches.front.captures;
int sign = 1;
int tzHours;
if(!captures[1].empty)
{
if(captures[1][0] == '-') {sign = -1;}
tzHours = to!int(captures[1][1 .. $]);
}
const tzMinutes = (!captures[2].empty) ? to!int(captures[2][1 .. $]) : 0;
const tzOffset = dur!"minutes"(sign * (60 * tzHours + tzMinutes));
return SysTime(DateTime(year, month, day, hour, minute, second),
hectonanosecond.dur!"hnsecs",
new immutable SimpleTimeZone(tzOffset));
}
catch(ConvException e)
{
throw new Exception("Unable to parse timestamp value " ~ value ~ " : " ~ e.msg);
}
catch(DateTimeException e)
{
throw new Exception("Invalid timestamp value " ~ value ~ " : " ~ e.msg);
}
assert(false, "This code should never be reached");
}
@safe unittest
{
string timestamp(string value)
{
return constructTimestamp(value).toISOString();
}
string canonical = "2001-12-15T02:59:43.1Z";
string iso8601 = "2001-12-14t21:59:43.10-05:00";
string spaceSeparated = "2001-12-14 21:59:43.10 -5";
string noTZ = "2001-12-15 2:59:43.10";
string noFraction = "2001-12-15 2:59:43";
string ymd = "2002-12-14";
assert(timestamp(canonical) == "20011215T025943.1Z");
//avoiding float conversion errors
assert(timestamp(iso8601) == "20011214T215943.0999999-05:00" ||
timestamp(iso8601) == "20011214T215943.1-05:00");
assert(timestamp(spaceSeparated) == "20011214T215943.0999999-05:00" ||
timestamp(spaceSeparated) == "20011214T215943.1-05:00");
assert(timestamp(noTZ) == "20011215T025943.0999999Z" ||
timestamp(noTZ) == "20011215T025943.1Z");
assert(timestamp(noFraction) == "20011215T025943Z");
assert(timestamp(ymd) == "20021214T000000Z");
}
// Construct a string _node.
string constructString(const string str) @safe
{
return str;
}
// Convert a sequence of single-element mappings into a sequence of pairs.
Node.Pair[] getPairs(string type, const Node[] nodes) @safe
{
Node.Pair[] pairs;
pairs.reserve(nodes.length);
foreach(node; nodes)
{
enforce(node.nodeID == NodeID.mapping && node.length == 1,
new Exception("While constructing " ~ type ~
", expected a mapping with single element"));
pairs ~= node.as!(Node.Pair[]);
}
return pairs;
}
// Construct an ordered map (ordered sequence of key:value pairs without duplicates) _node.
Node.Pair[] constructOrderedMap(const Node[] nodes) @safe
{
auto pairs = getPairs("ordered map", nodes);
//Detect duplicates.
//TODO this should be replaced by something with deterministic memory allocation.
auto keys = redBlackTree!Node();
foreach(ref pair; pairs)
{
enforce(!(pair.key in keys),
new Exception("Duplicate entry in an ordered map: "
~ pair.key.debugString()));
keys.insert(pair.key);
}
return pairs;
}
@safe unittest
{
Node[] alternateTypes(uint length) @safe
{
Node[] pairs;
foreach(long i; 0 .. length)
{
auto pair = (i % 2) ? Node.Pair(i.to!string, i) : Node.Pair(i, i.to!string);
pairs ~= Node([pair]);
}
return pairs;
}
Node[] sameType(uint length) @safe
{
Node[] pairs;
foreach(long i; 0 .. length)
{
auto pair = Node.Pair(i.to!string, i);
pairs ~= Node([pair]);
}
return pairs;
}
assertThrown(constructOrderedMap(alternateTypes(8) ~ alternateTypes(2)));
assertNotThrown(constructOrderedMap(alternateTypes(8)));
assertThrown(constructOrderedMap(sameType(64) ~ sameType(16)));
assertThrown(constructOrderedMap(alternateTypes(64) ~ alternateTypes(16)));
assertNotThrown(constructOrderedMap(sameType(64)));
assertNotThrown(constructOrderedMap(alternateTypes(64)));
}
// Construct a pairs (ordered sequence of key: value pairs allowing duplicates) _node.
Node.Pair[] constructPairs(const Node[] nodes) @safe
{
return getPairs("pairs", nodes);
}
// Construct a set _node.
Node[] constructSet(const Node.Pair[] pairs) @safe
{
// In future, the map here should be replaced with something with deterministic
// memory allocation if possible.
// Detect duplicates.
ubyte[Node] map;
Node[] nodes;
nodes.reserve(pairs.length);
foreach(pair; pairs)
{
enforce((pair.key in map) is null, new Exception("Duplicate entry in a set"));
map[pair.key] = 0;
nodes ~= pair.key;
}
return nodes;
}
@safe unittest
{
Node.Pair[] set(uint length) @safe
{
Node.Pair[] pairs;
foreach(long i; 0 .. length)
{
pairs ~= Node.Pair(i.to!string, YAMLNull());
}
return pairs;
}
auto DuplicatesShort = set(8) ~ set(2);
auto noDuplicatesShort = set(8);
auto DuplicatesLong = set(64) ~ set(4);
auto noDuplicatesLong = set(64);
bool eq(Node.Pair[] a, Node[] b)
{
if(a.length != b.length){return false;}
foreach(i; 0 .. a.length)
{
if(a[i].key != b[i])
{
return false;
}
}
return true;
}
auto nodeDuplicatesShort = DuplicatesShort.dup;
auto nodeNoDuplicatesShort = noDuplicatesShort.dup;
auto nodeDuplicatesLong = DuplicatesLong.dup;
auto nodeNoDuplicatesLong = noDuplicatesLong.dup;
assertThrown(constructSet(nodeDuplicatesShort));
assertNotThrown(constructSet(nodeNoDuplicatesShort));
assertThrown(constructSet(nodeDuplicatesLong));
assertNotThrown(constructSet(nodeNoDuplicatesLong));
}
// Construct a sequence (array) _node.
Node[] constructSequence(Node[] nodes) @safe
{
return nodes;
}
// Construct an unordered map (unordered set of key:value _pairs without duplicates) _node.
Node.Pair[] constructMap(Node.Pair[] pairs) @safe
{
//Detect duplicates.
//TODO this should be replaced by something with deterministic memory allocation.
auto keys = redBlackTree!Node();
foreach(ref pair; pairs)
{
enforce(!(pair.key in keys),
new Exception("Duplicate entry in a map: " ~ pair.key.debugString()));
keys.insert(pair.key);
}
return pairs;
}