vibe-core/source/vibe/core/sync.d

1346 lines
38 KiB
D
Raw Normal View History

/**
Interruptible Task synchronization facilities
Copyright: © 2012-2016 RejectedSoftware e.K.
Authors: Leonid Kramer, Sönke Ludwig, Manuel Frischknecht
License: Subject to the terms of the MIT license, as written in the included LICENSE.txt file.
*/
module vibe.core.sync;
import vibe.core.task;
import core.atomic;
import core.sync.mutex;
import core.sync.condition;
import eventcore.core;
import std.exception;
import std.stdio;
import std.traits : ReturnType;
enum LockMode {
lock,
tryLock,
defer
}
interface Lockable {
@safe:
void lock();
void unlock();
bool tryLock();
}
/** RAII lock for the Mutex class.
*/
struct ScopedMutexLock
{
@disable this(this);
private {
Mutex m_mutex;
bool m_locked;
LockMode m_mode;
}
this(core.sync.mutex.Mutex mutex, LockMode mode = LockMode.lock) {
assert(mutex !is null);
m_mutex = mutex;
final switch (mode) {
case LockMode.lock: lock(); break;
case LockMode.tryLock: tryLock(); break;
case LockMode.defer: break;
}
}
~this()
{
if( m_locked )
m_mutex.unlock();
}
@property bool locked() const { return m_locked; }
void unlock()
{
enforce(m_locked);
m_mutex.unlock();
m_locked = false;
}
bool tryLock()
{
enforce(!m_locked);
return m_locked = m_mutex.tryLock();
}
void lock()
{
enforce(!m_locked);
m_locked = true;
m_mutex.lock();
}
}
/*
Only for internal use:
Ensures that a mutex is locked while executing the given procedure.
This function works for all kinds of mutexes, in particular for
$(D core.sync.mutex.Mutex), $(D TaskMutex) and $(D InterruptibleTaskMutex).
Returns:
Returns the value returned from $(D PROC), if any.
*/
/// private
ReturnType!PROC performLocked(alias PROC, MUTEX)(MUTEX mutex)
{
mutex.lock();
scope (exit) mutex.unlock();
return PROC();
}
///
unittest {
int protected_var = 0;
auto mtx = new TaskMutex;
mtx.performLocked!({
protected_var++;
});
}
/**
Thread-local semaphore implementation for tasks.
When the semaphore runs out of concurrent locks, it will suspend. This class
is used in `vibe.core.connectionpool` to limit the number of concurrent
connections.
*/
class LocalTaskSemaphore
{
// requires a queue
import std.container.binaryheap;
import std.container.array;
//import vibe.utils.memory;
private {
struct Waiter {
ManualEvent signal;
ubyte priority;
uint seq;
}
BinaryHeap!(Array!Waiter, asc) m_waiters;
uint m_maxLocks;
uint m_locks;
uint m_seq;
}
this(uint max_locks)
{
m_maxLocks = max_locks;
}
/// Maximum number of concurrent locks
@property void maxLocks(uint max_locks) { m_maxLocks = max_locks; }
/// ditto
@property uint maxLocks() const { return m_maxLocks; }
/// Number of concurrent locks still available
@property uint available() const { return m_maxLocks - m_locks; }
/** Try to acquire a lock.
If a lock cannot be acquired immediately, returns `false` and leaves the
semaphore in its previous state.
Returns:
`true` is returned $(I iff) the number of available locks is greater
than one.
*/
bool tryLock()
{
if (available > 0)
{
m_locks++;
return true;
}
return false;
}
/** Acquires a lock.
Once the limit of concurrent locks is reaced, this method will block
until the number of locks drops below the limit.
*/
void lock(ubyte priority = 0)
{
import std.algorithm.comparison : min;
if (tryLock())
return;
Waiter w;
w.signal = createManualEvent();
w.priority = priority;
w.seq = min(0, m_seq - w.priority);
if (++m_seq == uint.max)
rewindSeq();
m_waiters.insert(w);
do w.signal.wait(); while (!tryLock());
// on resume:
destroy(w.signal);
}
/** Gives up an existing lock.
*/
void unlock()
{
m_locks--;
if (m_waiters.length > 0 && available > 0) {
Waiter w = m_waiters.front();
w.signal.emit(); // resume one
m_waiters.removeFront();
}
}
// if true, a goes after b. ie. b comes out front()
/// private
static bool asc(ref Waiter a, ref Waiter b)
{
if (a.seq == b.seq) {
if (a.priority == b.priority) {
// resolve using the pointer address
return (cast(size_t)&a.signal) > (cast(size_t) &b.signal);
}
// resolve using priority
return a.priority < b.priority;
}
// resolve using seq number
return a.seq > b.seq;
}
private void rewindSeq()
{
Array!Waiter waiters = m_waiters.release();
ushort min_seq;
import std.algorithm : min;
foreach (ref waiter; waiters[])
min_seq = min(waiter.seq, min_seq);
foreach (ref waiter; waiters[])
waiter.seq -= min_seq;
m_waiters.assume(waiters);
}
}
/**
Mutex implementation for fibers.
This mutex type can be used in exchange for a core.sync.mutex.Mutex, but
does not block the event loop when contention happens. Note that this
mutex does not allow recursive locking.
Notice:
Because this class is annotated nothrow, it cannot be interrupted
using $(D vibe.core.task.Task.interrupt()). The corresponding
$(D InterruptException) will be deferred until the next blocking
operation yields the event loop.
Use $(D InterruptibleTaskMutex) as an alternative that can be
interrupted.
See_Also: InterruptibleTaskMutex, RecursiveTaskMutex, core.sync.mutex.Mutex
*/
class TaskMutex : core.sync.mutex.Mutex, Lockable {
private TaskMutexImpl!false m_impl;
this(Object o) { m_impl.setup(); super(o); }
this() { m_impl.setup(); }
override bool tryLock() nothrow { return m_impl.tryLock(); }
override void lock() nothrow { m_impl.lock(); }
override void unlock() nothrow { m_impl.unlock(); }
}
unittest {
auto mutex = new TaskMutex;
{
auto lock = ScopedMutexLock(mutex);
assert(lock.locked);
assert(mutex.m_impl.m_locked);
auto lock2 = ScopedMutexLock(mutex, LockMode.tryLock);
assert(!lock2.locked);
}
assert(!mutex.m_impl.m_locked);
auto lock = ScopedMutexLock(mutex, LockMode.tryLock);
assert(lock.locked);
lock.unlock();
assert(!lock.locked);
synchronized(mutex){
assert(mutex.m_impl.m_locked);
}
assert(!mutex.m_impl.m_locked);
mutex.performLocked!({
assert(mutex.m_impl.m_locked);
});
assert(!mutex.m_impl.m_locked);
static if (__VERSION__ >= 2067) {
with(mutex.ScopedMutexLock) {
assert(mutex.m_impl.m_locked);
}
}
}
version (VibeLibevDriver) {} else // timers are not implemented for libev, yet
unittest { // test deferred throwing
import vibe.core.core;
auto mutex = new TaskMutex;
auto t1 = runTask({
scope (failure) assert(false, "No exception expected in first task!");
mutex.lock();
scope (exit) mutex.unlock();
sleep(20.msecs);
});
auto t2 = runTask({
scope (failure) assert(false, "Only InterruptException supposed to be thrown!");
mutex.lock();
scope (exit) mutex.unlock();
try {
yield();
assert(false, "Yield is supposed to have thrown an InterruptException.");
} catch (InterruptException) {
// as expected!
}
});
runTask({
// mutex is now locked in first task for 20 ms
// the second tasks is waiting in lock()
t2.interrupt();
t1.join();
t2.join();
assert(!mutex.m_impl.m_locked); // ensure that the scope(exit) has been executed
exitEventLoop();
});
runEventLoop();
}
version (VibeLibevDriver) {} else // timers are not implemented for libev, yet
unittest {
runMutexUnitTests!TaskMutex();
}
/**
Alternative to $(D TaskMutex) that supports interruption.
This class supports the use of $(D vibe.core.task.Task.interrupt()) while
waiting in the $(D lock()) method. However, because the interface is not
$(D nothrow), it cannot be used as an object monitor.
See_Also: $(D TaskMutex), $(D InterruptibleRecursiveTaskMutex)
*/
final class InterruptibleTaskMutex : Lockable {
private TaskMutexImpl!true m_impl;
this() { m_impl.setup(); }
bool tryLock() nothrow { return m_impl.tryLock(); }
void lock() { m_impl.lock(); }
void unlock() nothrow { m_impl.unlock(); }
}
version (VibeLibevDriver) {} else // timers are not implemented for libev, yet
unittest {
runMutexUnitTests!InterruptibleTaskMutex();
}
/**
Recursive mutex implementation for tasks.
This mutex type can be used in exchange for a core.sync.mutex.Mutex, but
does not block the event loop when contention happens.
Notice:
Because this class is annotated nothrow, it cannot be interrupted
using $(D vibe.core.task.Task.interrupt()). The corresponding
$(D InterruptException) will be deferred until the next blocking
operation yields the event loop.
Use $(D InterruptibleRecursiveTaskMutex) as an alternative that can be
interrupted.
See_Also: TaskMutex, core.sync.mutex.Mutex
*/
class RecursiveTaskMutex : core.sync.mutex.Mutex, Lockable {
private RecursiveTaskMutexImpl!false m_impl;
this(Object o) { m_impl.setup(); super(o); }
this() { m_impl.setup(); }
override bool tryLock() { return m_impl.tryLock(); }
override void lock() { m_impl.lock(); }
override void unlock() { m_impl.unlock(); }
}
version (VibeLibevDriver) {} else // timers are not implemented for libev, yet
unittest {
runMutexUnitTests!RecursiveTaskMutex();
}
/**
Alternative to $(D RecursiveTaskMutex) that supports interruption.
This class supports the use of $(D vibe.core.task.Task.interrupt()) while
waiting in the $(D lock()) method. However, because the interface is not
$(D nothrow), it cannot be used as an object monitor.
See_Also: $(D RecursiveTaskMutex), $(D InterruptibleTaskMutex)
*/
final class InterruptibleRecursiveTaskMutex : Lockable {
private RecursiveTaskMutexImpl!true m_impl;
this() { m_impl.setup(); }
bool tryLock() { return m_impl.tryLock(); }
void lock() { m_impl.lock(); }
void unlock() { m_impl.unlock(); }
}
version (VibeLibevDriver) {} else // timers are not implemented for libev, yet
unittest {
runMutexUnitTests!InterruptibleRecursiveTaskMutex();
}
private void runMutexUnitTests(M)()
{
import vibe.core.core;
auto m = new M;
Task t1, t2;
void runContendedTasks(bool interrupt_t1, bool interrupt_t2) {
assert(!m.m_impl.m_locked);
// t1 starts first and acquires the mutex for 20 ms
// t2 starts second and has to wait in m.lock()
t1 = runTask({
assert(!m.m_impl.m_locked);
m.lock();
assert(m.m_impl.m_locked);
if (interrupt_t1) assertThrown!InterruptException(sleep(100.msecs));
else assertNotThrown(sleep(20.msecs));
m.unlock();
});
t2 = runTask({
assert(!m.tryLock());
if (interrupt_t2) {
try m.lock();
catch (InterruptException) return;
try yield(); // rethrows any deferred exceptions
catch (InterruptException) {
m.unlock();
return;
}
assert(false, "Supposed to have thrown an InterruptException.");
} else assertNotThrown(m.lock());
assert(m.m_impl.m_locked);
sleep(20.msecs);
m.unlock();
assert(!m.m_impl.m_locked);
});
}
// basic lock test
m.performLocked!({
assert(m.m_impl.m_locked);
});
assert(!m.m_impl.m_locked);
// basic contention test
runContendedTasks(false, false);
runTask({
assert(t1.running && t2.running);
assert(m.m_impl.m_locked);
t1.join();
assert(!t1.running && t2.running);
yield(); // give t2 a chance to take the lock
assert(m.m_impl.m_locked);
t2.join();
assert(!t2.running);
assert(!m.m_impl.m_locked);
exitEventLoop();
});
runEventLoop();
assert(!m.m_impl.m_locked);
// interruption test #1
runContendedTasks(true, false);
runTask({
assert(t1.running && t2.running);
assert(m.m_impl.m_locked);
t1.interrupt();
t1.join();
assert(!t1.running && t2.running);
yield(); // give t2 a chance to take the lock
assert(m.m_impl.m_locked);
t2.join();
assert(!t2.running);
assert(!m.m_impl.m_locked);
exitEventLoop();
});
runEventLoop();
assert(!m.m_impl.m_locked);
// interruption test #2
runContendedTasks(false, true);
runTask({
assert(t1.running && t2.running);
assert(m.m_impl.m_locked);
t2.interrupt();
t2.join();
assert(!t2.running);
static if (is(M == InterruptibleTaskMutex) || is (M == InterruptibleRecursiveTaskMutex))
assert(t1.running && m.m_impl.m_locked);
t1.join();
assert(!t1.running);
assert(!m.m_impl.m_locked);
exitEventLoop();
});
runEventLoop();
assert(!m.m_impl.m_locked);
}
/**
Event loop based condition variable or "event" implementation.
This class can be used in exchange for a $(D core.sync.condition.Condition)
to avoid blocking the event loop when waiting.
Notice:
Because this class is annotated nothrow, it cannot be interrupted
using $(D vibe.core.task.Task.interrupt()). The corresponding
$(D InterruptException) will be deferred until the next blocking
operation yields to the event loop.
Use $(D InterruptibleTaskCondition) as an alternative that can be
interrupted.
Note that it is generally not safe to use a `TaskCondition` together with an
interruptible mutex type.
See_Also: InterruptibleTaskCondition
*/
class TaskCondition : core.sync.condition.Condition {
private TaskConditionImpl!(false, Mutex) m_impl;
this(core.sync.mutex.Mutex mtx) {
m_impl.setup(mtx);
super(mtx);
}
override @property Mutex mutex() { return m_impl.mutex; }
override void wait() { m_impl.wait(); }
override bool wait(Duration timeout) { return m_impl.wait(timeout); }
override void notify() { m_impl.notify(); }
override void notifyAll() { m_impl.notifyAll(); }
}
/** This example shows the typical usage pattern using a `while` loop to make
sure that the final condition is reached.
*/
unittest {
import vibe.core.core;
__gshared Mutex mutex;
__gshared TaskCondition condition;
__gshared int workers_still_running = 0;
// setup the task condition
mutex = new Mutex;
condition = new TaskCondition(mutex);
// start up the workers and count how many are running
foreach (i; 0 .. 4) {
workers_still_running++;
runWorkerTask({
// simulate some work
sleep(100.msecs);
// notify the waiter that we're finished
synchronized (mutex)
workers_still_running--;
condition.notify();
});
}
// wait until all tasks have decremented the counter back to zero
synchronized (mutex) {
while (workers_still_running > 0)
condition.wait();
}
}
/**
Alternative to `TaskCondition` that supports interruption.
This class supports the use of `vibe.core.task.Task.interrupt()` while
waiting in the `wait()` method.
See `TaskCondition` for an example.
Notice:
Note that it is generally not safe to use an
`InterruptibleTaskCondition` together with an interruptible mutex type.
See_Also: `TaskCondition`
*/
final class InterruptibleTaskCondition {
private TaskConditionImpl!(true, Lockable) m_impl;
this(core.sync.mutex.Mutex mtx) { m_impl.setup(mtx); }
this(Lockable mtx) { m_impl.setup(mtx); }
@property Lockable mutex() { return m_impl.mutex; }
void wait() { m_impl.wait(); }
bool wait(Duration timeout) { return m_impl.wait(timeout); }
void notify() { m_impl.notify(); }
void notifyAll() { m_impl.notifyAll(); }
}
/** Creates a new signal that can be shared between fibers.
*/
ManualEvent createManualEvent()
{
return ManualEvent.init;
}
/** A manually triggered cross-task event.
Note: the ownership can be shared between multiple fibers and threads.
*/
struct ManualEvent {
bool opCast() const nothrow { return true; }
int emitCount() const nothrow { return 0; }
int emit() nothrow { return 0; }
int wait() { assert(false); }
int wait(int) { import vibe.core.core : sleep; sleep(30.seconds); assert(false); }
int wait(Duration, int) { assert(false); }
int waitUninterruptible() nothrow { assert(false); }
int waitUninterruptible(int) nothrow { assert(false); }
int waitUninterruptible(Duration, int) nothrow { assert(false); }
}
/+interface ManualEvent {
/// A counter that is increased with every emit() call
@property int emitCount() const nothrow;
/// Emits the signal, waking up all owners of the signal.
void emit() nothrow;
/** Acquires ownership and waits until the signal is emitted.
Throws:
May throw an $(D InterruptException) if the task gets interrupted
using $(D Task.interrupt()).
*/
void wait();
/** Acquires ownership and waits until the emit count differs from the given one.
Throws:
May throw an $(D InterruptException) if the task gets interrupted
using $(D Task.interrupt()).
*/
int wait(int reference_emit_count);
/** Acquires ownership and waits until the emit count differs from the given one or until a timeout is reaced.
Throws:
May throw an $(D InterruptException) if the task gets interrupted
using $(D Task.interrupt()).
*/
int wait(Duration timeout, int reference_emit_count);
/** Same as $(D wait), but defers throwing any $(D InterruptException).
This method is annotated $(D nothrow) at the expense that it cannot be
interrupted.
*/
int waitUninterruptible(int reference_emit_count) nothrow;
/// ditto
int waitUninterruptible(Duration timeout, int reference_emit_count) nothrow;
}+/
private struct TaskMutexImpl(bool INTERRUPTIBLE) {
import std.stdio;
private {
shared(bool) m_locked = false;
shared(uint) m_waiters = 0;
ManualEvent m_signal;
debug Task m_owner;
}
void setup()
{
m_signal = createManualEvent();
}
@trusted bool tryLock()
{
if (cas(&m_locked, false, true)) {
debug m_owner = Task.getThis();
version(MutexPrint) writefln("mutex %s lock %s", cast(void*)this, atomicLoad(m_waiters));
return true;
}
return false;
}
@trusted void lock()
{
if (tryLock()) return;
debug assert(m_owner == Task() || m_owner != Task.getThis(), "Recursive mutex lock.");
atomicOp!"+="(m_waiters, 1);
version(MutexPrint) writefln("mutex %s wait %s", cast(void*)this, atomicLoad(m_waiters));
scope(exit) atomicOp!"-="(m_waiters, 1);
auto ecnt = m_signal.emitCount();
while (!tryLock()) {
static if (INTERRUPTIBLE) ecnt = m_signal.wait(ecnt);
else ecnt = m_signal.waitUninterruptible(ecnt);
}
}
@trusted void unlock()
{
assert(m_locked);
debug {
assert(m_owner == Task.getThis());
m_owner = Task();
}
atomicStore!(MemoryOrder.rel)(m_locked, false);
version(MutexPrint) writefln("mutex %s unlock %s", cast(void*)this, atomicLoad(m_waiters));
if (atomicLoad(m_waiters) > 0)
m_signal.emit();
}
}
private struct RecursiveTaskMutexImpl(bool INTERRUPTIBLE) {
import std.stdio;
private {
core.sync.mutex.Mutex m_mutex;
Task m_owner;
size_t m_recCount = 0;
shared(uint) m_waiters = 0;
ManualEvent m_signal;
@property bool m_locked() const { return m_recCount > 0; }
}
void setup()
{
m_signal = createManualEvent();
m_mutex = new core.sync.mutex.Mutex;
}
@trusted bool tryLock()
{
auto self = Task.getThis();
return m_mutex.performLocked!({
if (!m_owner) {
assert(m_recCount == 0);
m_recCount = 1;
m_owner = self;
return true;
} else if (m_owner == self) {
m_recCount++;
return true;
}
return false;
});
}
@trusted void lock()
{
if (tryLock()) return;
atomicOp!"+="(m_waiters, 1);
version(MutexPrint) writefln("mutex %s wait %s", cast(void*)this, atomicLoad(m_waiters));
scope(exit) atomicOp!"-="(m_waiters, 1);
auto ecnt = m_signal.emitCount();
while (!tryLock()) {
static if (INTERRUPTIBLE) ecnt = m_signal.wait(ecnt);
else ecnt = m_signal.waitUninterruptible(ecnt);
}
}
@trusted void unlock()
{
auto self = Task.getThis();
m_mutex.performLocked!({
assert(m_owner == self);
assert(m_recCount > 0);
m_recCount--;
if (m_recCount == 0) {
m_owner = Task.init;
}
});
version(MutexPrint) writefln("mutex %s unlock %s", cast(void*)this, atomicLoad(m_waiters));
if (atomicLoad(m_waiters) > 0)
m_signal.emit();
}
}
private struct TaskConditionImpl(bool INTERRUPTIBLE, LOCKABLE) {
private {
LOCKABLE m_mutex;
ManualEvent m_signal;
}
static if (is(LOCKABLE == Lockable)) {
final class MutexWrapper : Lockable {
private core.sync.mutex.Mutex m_mutex;
this(core.sync.mutex.Mutex mtx) { m_mutex = mtx; }
@trusted void lock() { m_mutex.lock(); }
@trusted void unlock() { m_mutex.unlock(); }
@trusted bool tryLock() { return m_mutex.tryLock(); }
}
void setup(core.sync.mutex.Mutex mtx)
{
setup(new MutexWrapper(mtx));
}
}
void setup(LOCKABLE mtx)
{
m_mutex = mtx;
m_signal = createManualEvent();
}
@property LOCKABLE mutex() { return m_mutex; }
@trusted void wait()
{
if (auto tm = cast(TaskMutex)m_mutex) {
assert(tm.m_impl.m_locked);
debug assert(tm.m_impl.m_owner == Task.getThis());
}
auto refcount = m_signal.emitCount;
m_mutex.unlock();
scope(exit) m_mutex.lock();
static if (INTERRUPTIBLE) m_signal.wait(refcount);
else m_signal.waitUninterruptible(refcount);
}
@trusted bool wait(Duration timeout)
{
assert(!timeout.isNegative());
if (auto tm = cast(TaskMutex)m_mutex) {
assert(tm.m_impl.m_locked);
debug assert(tm.m_impl.m_owner == Task.getThis());
}
auto refcount = m_signal.emitCount;
m_mutex.unlock();
scope(exit) m_mutex.lock();
static if (INTERRUPTIBLE) return m_signal.wait(timeout, refcount) != refcount;
else return m_signal.waitUninterruptible(timeout, refcount) != refcount;
}
@trusted void notify()
{
m_signal.emit();
}
@trusted void notifyAll()
{
m_signal.emit();
}
}
/** Contains the shared state of a $(D TaskReadWriteMutex).
*
* Since a $(D TaskReadWriteMutex) consists of two actual Mutex
* objects that rely on common memory, this class implements
* the actual functionality of their method calls.
*
* The method implementations are based on two static parameters
* ($(D INTERRUPTIBLE) and $(D INTENT)), which are configured through
* template arguments:
*
* - $(D INTERRUPTIBLE) determines whether the mutex implementation
* are interruptible by vibe.d's $(D vibe.core.task.Task.interrupt())
* method or not.
*
* - $(D INTENT) describes the intent, with which a locking operation is
* performed (i.e. $(D READ_ONLY) or $(D READ_WRITE)). RO locking allows for
* multiple Tasks holding the mutex, whereas RW locking will cause
* a "bottleneck" so that only one Task can write to the protected
* data at once.
*/
private struct ReadWriteMutexState(bool INTERRUPTIBLE)
{
/** The policy with which the mutex should operate.
*
* The policy determines how the acquisition of the locks is
* performed and can be used to tune the mutex according to the
* underlying algorithm in which it is used.
*
* According to the provided policy, the mutex will either favor
* reading or writing tasks and could potentially starve the
* respective opposite.
*
* cf. $(D core.sync.rwmutex.ReadWriteMutex.Policy)
*/
enum Policy : int
{
/** Readers are prioritized, writers may be starved as a result. */
PREFER_READERS = 0,
/** Writers are prioritized, readers may be starved as a result. */
PREFER_WRITERS
}
/** The intent with which a locking operation is performed.
*
* Since both locks share the same underlying algorithms, the actual
* intent with which a lock operation is performed (i.e read/write)
* are passed as a template parameter to each method.
*/
enum LockingIntent : bool
{
/** Perform a read lock/unlock operation. Multiple reading locks can be
* active at a time. */
READ_ONLY = 0,
/** Perform a write lock/unlock operation. Only a single writer can
* hold a lock at any given time. */
READ_WRITE = 1
}
private {
//Queue counters
/** The number of reading tasks waiting for the lock to become available. */
shared(uint) m_waitingForReadLock = 0;
/** The number of writing tasks waiting for the lock to become available. */
shared(uint) m_waitingForWriteLock = 0;
//Lock counters
/** The number of reading tasks that currently hold the lock. */
uint m_activeReadLocks = 0;
/** The number of writing tasks that currently hold the lock (binary). */
ubyte m_activeWriteLocks = 0;
/** The policy determining the lock's behavior. */
Policy m_policy;
//Queue Events
/** The event used to wake reading tasks waiting for the lock while it is blocked. */
ManualEvent m_readyForReadLock;
/** The event used to wake writing tasks waiting for the lock while it is blocked. */
ManualEvent m_readyForWriteLock;
/** The underlying mutex that gates the access to the shared state. */
Mutex m_counterMutex;
}
this(Policy policy)
{
m_policy = policy;
m_counterMutex = new Mutex();
m_readyForReadLock = createManualEvent();
m_readyForWriteLock = createManualEvent();
}
@disable this(this);
/** The policy with which the lock has been created. */
@property policy() const { return m_policy; }
version(RWMutexPrint)
{
/** Print out debug information during lock operations. */
void printInfo(string OP, LockingIntent INTENT)() nothrow
{
import std.string;
try
{
import std.stdio;
writefln("RWMutex: %s (%s), active: RO: %d, RW: %d; waiting: RO: %d, RW: %d",
OP.leftJustify(10,' '),
INTENT == LockingIntent.READ_ONLY ? "RO" : "RW",
m_activeReadLocks, m_activeWriteLocks,
m_waitingForReadLock, m_waitingForWriteLock
);
}
catch (Throwable t){}
}
}
/** An internal shortcut method to determine the queue event for a given intent. */
@property ref auto queueEvent(LockingIntent INTENT)()
{
static if (INTENT == LockingIntent.READ_ONLY)
return m_readyForReadLock;
else
return m_readyForWriteLock;
}
/** An internal shortcut method to determine the queue counter for a given intent. */
@property ref auto queueCounter(LockingIntent INTENT)()
{
static if (INTENT == LockingIntent.READ_ONLY)
return m_waitingForReadLock;
else
return m_waitingForWriteLock;
}
/** An internal shortcut method to determine the current emitCount of the queue counter for a given intent. */
int emitCount(LockingIntent INTENT)()
{
return queueEvent!INTENT.emitCount();
}
/** An internal shortcut method to determine the active counter for a given intent. */
@property ref auto activeCounter(LockingIntent INTENT)()
{
static if (INTENT == LockingIntent.READ_ONLY)
return m_activeReadLocks;
else
return m_activeWriteLocks;
}
/** An internal shortcut method to wait for the queue event for a given intent.
*
* This method is used during the `lock()` operation, after a
* `tryLock()` operation has been unsuccessfully finished.
* The active fiber will yield and be suspended until the queue event
* for the given intent will be fired.
*/
int wait(LockingIntent INTENT)(int count)
{
static if (INTERRUPTIBLE)
return queueEvent!INTENT.wait(count);
else
return queueEvent!INTENT.waitUninterruptible(count);
}
/** An internal shortcut method to notify tasks waiting for the lock to become available again.
*
* This method is called whenever the number of owners of the mutex hits
* zero; this is basically the counterpart to `wait()`.
* It wakes any Task currently waiting for the mutex to be released.
*/
@trusted void notify(LockingIntent INTENT)()
{
static if (INTENT == LockingIntent.READ_ONLY)
{ //If the last reader unlocks the mutex, notify all waiting writers
if (atomicLoad(m_waitingForWriteLock) > 0)
m_readyForWriteLock.emit();
}
else
{ //If a writer unlocks the mutex, notify both readers and writers
if (atomicLoad(m_waitingForReadLock) > 0)
m_readyForReadLock.emit();
if (atomicLoad(m_waitingForWriteLock) > 0)
m_readyForWriteLock.emit();
}
}
/** An internal method that performs the acquisition attempt in different variations.
*
* Since both locks rely on a common TaskMutex object which gates the access
* to their common data acquisition attempts for this lock are more complex
* than for simple mutex variants. This method will thus be performing the
* `tryLock()` operation in two variations, depending on the callee:
*
* If called from the outside ($(D WAIT_FOR_BLOCKING_MUTEX) = false), the method
* will instantly fail if the underlying mutex is locked (i.e. during another
* `tryLock()` or `unlock()` operation), in order to guarantee the fastest
* possible locking attempt.
*
* If used internally by the `lock()` method ($(D WAIT_FOR_BLOCKING_MUTEX) = true),
* the operation will wait for the mutex to be available before deciding if
* the lock can be acquired, since the attempt would anyway be repeated until
* it succeeds. This will prevent frequent retries under heavy loads and thus
* should ensure better performance.
*/
@trusted bool tryLock(LockingIntent INTENT, bool WAIT_FOR_BLOCKING_MUTEX)()
{
//Log a debug statement for the attempt
version(RWMutexPrint)
printInfo!("tryLock",INTENT)();
//Try to acquire the lock
static if (!WAIT_FOR_BLOCKING_MUTEX)
{
if (!m_counterMutex.tryLock())
return false;
}
else
m_counterMutex.lock();
scope(exit)
m_counterMutex.unlock();
//Log a debug statement for the attempt
version(RWMutexPrint)
printInfo!("checkCtrs",INTENT)();
//Check if there's already an active writer
if (m_activeWriteLocks > 0)
return false;
//If writers are preferred over readers, check whether there
//currently is a writer in the waiting queue and abort if
//that's the case.
static if (INTENT == LockingIntent.READ_ONLY)
if (m_policy.PREFER_WRITERS && m_waitingForWriteLock > 0)
return false;
//If we are locking the mutex for writing, make sure that
//there's no reader active.
static if (INTENT == LockingIntent.READ_WRITE)
if (m_activeReadLocks > 0)
return false;
//We can successfully acquire the lock!
//Log a debug statement for the success.
version(RWMutexPrint)
printInfo!("lock",INTENT)();
//Increase the according counter
//(number of active readers/writers)
//and return a success code.
activeCounter!INTENT += 1;
return true;
}
/** Attempt to acquire the lock for a given intent.
*
* Returns:
* `true`, if the lock was successfully acquired;
* `false` otherwise.
*/
@trusted bool tryLock(LockingIntent INTENT)()
{
//Try to lock this mutex without waiting for the underlying
//TaskMutex - fail if it is already blocked.
return tryLock!(INTENT,false)();
}
/** Acquire the lock for the given intent; yield and suspend until the lock has been acquired. */
@trusted void lock(LockingIntent INTENT)()
{
//Prepare a waiting action before the first
//`tryLock()` call in order to avoid a race
//condition that could lead to the queue notification
//not being fired.
auto count = emitCount!INTENT;
atomicOp!"+="(queueCounter!INTENT,1);
scope(exit)
atomicOp!"-="(queueCounter!INTENT,1);
//Try to lock the mutex
auto locked = tryLock!(INTENT,true)();
if (locked)
return;
//Retry until we successfully acquired the lock
while(!locked)
{
version(RWMutexPrint)
printInfo!("wait",INTENT)();
count = wait!INTENT(count);
locked = tryLock!(INTENT,true)();
}
}
/** Unlock the mutex after a successful acquisition. */
@trusted void unlock(LockingIntent INTENT)()
{
version(RWMutexPrint)
printInfo!("unlock",INTENT)();
debug assert(activeCounter!INTENT > 0);
synchronized(m_counterMutex)
{
//Decrement the counter of active lock holders.
//If the counter hits zero, notify waiting Tasks
activeCounter!INTENT -= 1;
if (activeCounter!INTENT == 0)
{
version(RWMutexPrint)
printInfo!("notify",INTENT)();
notify!INTENT();
}
}
}
}
/** A ReadWriteMutex implementation for fibers.
*
* This mutex can be used in exchange for a $(D core.sync.mutex.ReadWriteMutex),
* but does not block the event loop in contention situations. The `reader` and `writer`
* members are used for locking. Locking the `reader` mutex allows access to multiple
* readers at once, while the `writer` mutex only allows a single writer to lock it at
* any given time. Locks on `reader` and `writer` are mutually exclusive (i.e. whenever a
* writer is active, no readers can be active at the same time, and vice versa).
*
* Notice:
* Mutexes implemented by this class cannot be interrupted
* using $(D vibe.core.task.Task.interrupt()). The corresponding
* InterruptException will be deferred until the next blocking
* operation yields the event loop.
*
* Use $(D InterruptibleTaskReadWriteMutex) as an alternative that can be
* interrupted.
*
* cf. $(D core.sync.mutex.ReadWriteMutex)
*/
class TaskReadWriteMutex
{
private {
alias State = ReadWriteMutexState!false;
alias LockingIntent = State.LockingIntent;
alias READ_ONLY = LockingIntent.READ_ONLY;
alias READ_WRITE = LockingIntent.READ_WRITE;
/** The shared state used by the reader and writer mutexes. */
State m_state;
}
/** The policy with which the mutex should operate.
*
* The policy determines how the acquisition of the locks is
* performed and can be used to tune the mutex according to the
* underlying algorithm in which it is used.
*
* According to the provided policy, the mutex will either favor
* reading or writing tasks and could potentially starve the
* respective opposite.
*
* cf. $(D core.sync.rwmutex.ReadWriteMutex.Policy)
*/
alias Policy = State.Policy;
/** A common baseclass for both of the provided mutexes.
*
* The intent for the according mutex is specified through the
* $(D INTENT) template argument, which determines if a mutex is
* used for read or write locking.
*/
final class Mutex(LockingIntent INTENT): core.sync.mutex.Mutex, Lockable
{
/** Try to lock the mutex. cf. $(D core.sync.mutex.Mutex) */
override bool tryLock() { return m_state.tryLock!INTENT(); }
/** Lock the mutex. cf. $(D core.sync.mutex.Mutex) */
override void lock() { m_state.lock!INTENT(); }
/** Unlock the mutex. cf. $(D core.sync.mutex.Mutex) */
override void unlock() { m_state.unlock!INTENT(); }
}
alias Reader = Mutex!READ_ONLY;
alias Writer = Mutex!READ_WRITE;
Reader reader;
Writer writer;
this(Policy policy = Policy.PREFER_WRITERS)
{
m_state = State(policy);
reader = new Reader();
writer = new Writer();
}
/** The policy with which the lock has been created. */
@property Policy policy() const { return m_state.policy; }
}
/** Alternative to $(D TaskReadWriteMutex) that supports interruption.
*
* This class supports the use of $(D vibe.core.task.Task.interrupt()) while
* waiting in the `lock()` method.
*
* cf. $(D core.sync.mutex.ReadWriteMutex)
*/
class InterruptibleTaskReadWriteMutex
{
private {
alias State = ReadWriteMutexState!true;
alias LockingIntent = State.LockingIntent;
alias READ_ONLY = LockingIntent.READ_ONLY;
alias READ_WRITE = LockingIntent.READ_WRITE;
/** The shared state used by the reader and writer mutexes. */
State m_state;
}
/** The policy with which the mutex should operate.
*
* The policy determines how the acquisition of the locks is
* performed and can be used to tune the mutex according to the
* underlying algorithm in which it is used.
*
* According to the provided policy, the mutex will either favor
* reading or writing tasks and could potentially starve the
* respective opposite.
*
* cf. $(D core.sync.rwmutex.ReadWriteMutex.Policy)
*/
alias Policy = State.Policy;
/** A common baseclass for both of the provided mutexes.
*
* The intent for the according mutex is specified through the
* $(D INTENT) template argument, which determines if a mutex is
* used for read or write locking.
*
*/
final class Mutex(LockingIntent INTENT): core.sync.mutex.Mutex, Lockable
{
/** Try to lock the mutex. cf. $(D core.sync.mutex.Mutex) */
override bool tryLock() { return m_state.tryLock!INTENT(); }
/** Lock the mutex. cf. $(D core.sync.mutex.Mutex) */
override void lock() { m_state.lock!INTENT(); }
/** Unlock the mutex. cf. $(D core.sync.mutex.Mutex) */
override void unlock() { m_state.unlock!INTENT(); }
}
alias Reader = Mutex!READ_ONLY;
alias Writer = Mutex!READ_WRITE;
Reader reader;
Writer writer;
this(Policy policy = Policy.PREFER_WRITERS)
{
m_state = State(policy);
reader = new Reader();
writer = new Writer();
}
/** The policy with which the lock has been created. */
@property Policy policy() const { return m_state.policy; }
}