Merge pull request #25 from vibe-d/channels

Implement typed cross-task channels
merged-on-behalf-of: Leonid Kramer <l-kramer@users.noreply.github.com>
This commit is contained in:
The Dlang Bot 2019-01-20 13:51:36 +01:00 committed by GitHub
commit c21e1aa06d
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
2 changed files with 256 additions and 10 deletions

236
source/vibe/core/channel.d Normal file
View file

@ -0,0 +1,236 @@
/** Implements a thread-safe, typed producer-consumer queue.
Copyright: © 2017-2019 RejectedSoftware e.K.
Authors: Sönke Ludwig
License: Subject to the terms of the MIT license, as written in the included LICENSE.txt file.
*/
module vibe.core.channel;
import vibe.core.sync : TaskCondition;
import vibe.internal.array : FixedRingBuffer;
import std.algorithm.mutation : move, swap;
import std.exception : enforce;
import core.sync.mutex;
// multiple producers allowed, multiple consumers allowed - Q: should this be restricted to allow higher performance? maybe configurable?
// currently always buffered - TODO: implement blocking non-buffered mode
// TODO: implement a multi-channel wait, e.g.
// TaggedAlgebraic!(...) consumeAny(ch1, ch2, ch3); - requires a waitOnMultipleConditions function
/** Creates a new channel suitable for cross-task and cross-thread communication.
*/
Channel!(T, buffer_size) createChannel(T, size_t buffer_size = 100)()
{
Channel!(T, buffer_size) ret;
ret.m_impl = new shared ChannelImpl!(T, buffer_size);
return ret;
}
/** Thread-safe typed data channel implementation.
The implementation supports multiple-reader-multiple-writer operation across
multiple tasks in multiple threads.
*/
struct Channel(T, size_t buffer_size) {
enum bufferSize = buffer_size;
private shared ChannelImpl!(T, buffer_size) m_impl;
/** Determines whether there is more data to read.
This property is empty $(I iff) no more elements are in the internal
buffer and `close()` has been called. Once the channel is empty,
subsequent calls to `consumeOne` or `consumeAll` will throw an
exception.
Note that relying on the return value to determine whether another
element can be read is only safe in a single-reader scenario. Use
`tryConsumeOne` in a multiple-reader scenario instead.
*/
@property bool empty() { return m_impl.empty; }
/** Closes the channel.
A closed channel does not accept any new items enqueued using `put` and
causes `empty` to return `fals` as soon as all preceeding elements have
been consumed.
*/
void close() { m_impl.close(); }
/** Consumes a single element off the queue.
This function will block if no elements are available. If the `empty`
property is `true`, an exception will be thrown.
*/
T consumeOne() { return m_impl.consumeOne(); }
/** Attempts to consume a single element.
If no more elements are available and the channel has been closed,
`false` is returned and `dst` is left untouched.
*/
bool tryConsumeOne(ref T dst) { return m_impl.tryConsumeOne(dst); }
/** Attempts to consume all elements currently in the queue.
This function will block if no elements are available. Once at least one
element is available, the contents of `dst` will be replaced with all
available elements.
If the `empty` property is or becomes `true` before data becomes
avaiable, `dst` will be left untouched and `false` is returned.
*/
bool consumeAll(ref FixedRingBuffer!(T, buffer_size) dst)
{ return m_impl.consumeAll(dst); }
/** Enqueues an element.
This function may block the the event that the internal buffer is full.
*/
void put(T item) { m_impl.put(item.move); }
}
private final class ChannelImpl(T, size_t buffer_size) {
import vibe.core.concurrency : isWeaklyIsolated;
static assert(isWeaklyIsolated!T, "Channel data type "~T.stringof~" is not safe to pass between threads.");
private {
Mutex m_mutex;
TaskCondition m_condition;
FixedRingBuffer!(T, buffer_size) m_items;
bool m_closed = false;
}
this()
shared {
m_mutex = cast(shared)new Mutex;
m_condition = cast(shared)new TaskCondition(cast(Mutex)m_mutex);
}
@property bool empty()
shared {
synchronized (m_mutex) {
auto thisus = () @trusted { return cast(ChannelImpl)this; } ();
return thisus.m_closed && thisus.m_items.empty;
}
}
void close()
shared {
synchronized (m_mutex) {
auto thisus = () @trusted { return cast(ChannelImpl)this; } ();
thisus.m_closed = true;
thisus.m_condition.notifyAll();
}
}
bool tryConsumeOne(ref T dst)
shared {
auto thisus = () @trusted { return cast(ChannelImpl)this; } ();
bool was_full = false;
synchronized (m_mutex) {
while (thisus.m_items.empty) {
if (m_closed) return false;
thisus.m_condition.wait();
}
was_full = thisus.m_items.full;
move(thisus.m_items.front, dst);
thisus.m_items.popFront();
}
if (was_full) thisus.m_condition.notifyAll();
return true;
}
T consumeOne()
shared {
auto thisus = () @trusted { return cast(ChannelImpl)this; } ();
T ret;
bool was_full = false;
synchronized (m_mutex) {
while (thisus.m_items.empty) {
if (m_closed) throw new Exception("Attempt to consume from an empty channel.");
thisus.m_condition.wait();
}
was_full = thisus.m_items.full;
move(thisus.m_items.front, ret);
thisus.m_items.popFront();
}
if (was_full) thisus.m_condition.notifyAll();
return ret.move;
}
bool consumeAll(ref FixedRingBuffer!(T, buffer_size) dst)
shared {
auto thisus = () @trusted { return cast(ChannelImpl)this; } ();
bool was_full = false;
synchronized (m_mutex) {
while (thisus.m_items.empty) {
if (m_closed) return false;
thisus.m_condition.wait();
}
was_full = thisus.m_items.full;
swap(thisus.m_items, dst);
}
if (was_full) thisus.m_condition.notifyAll();
return true;
}
void put(T item)
shared {
auto thisus = () @trusted { return cast(ChannelImpl)this; } ();
bool need_notify = false;
synchronized (m_mutex) {
enforce(!m_closed, "Sending on closed channel.");
while (thisus.m_items.full)
thisus.m_condition.wait();
need_notify = thisus.m_items.empty;
thisus.m_items.put(item.move);
}
if (need_notify) thisus.m_condition.notifyAll();
}
}
unittest { // test basic operation and non-copyable struct compatiblity
static struct S {
int i;
@disable this(this);
}
auto ch = createChannel!S;
ch.put(S(1));
assert(ch.consumeOne().i == 1);
ch.put(S(4));
ch.put(S(5));
{
FixedRingBuffer!(S, 100) buf;
ch.consumeAll(buf);
assert(buf.length == 2);
assert(buf[0].i == 4);
assert(buf[1].i == 5);
}
ch.put(S(2));
assert(!ch.empty);
ch.close();
assert(!ch.empty);
S v;
assert(ch.tryConsumeOne(v));
assert(v.i == 2);
assert(ch.empty);
assert(!ch.tryConsumeOne(v));
}

View file

@ -361,7 +361,7 @@ struct FixedRingBuffer(T, size_t N = 0, bool INITIALIZE = true) {
m_start = 0;
}
void put()(T itm) { assert(m_fill < m_buffer.length); m_buffer[mod(m_start + m_fill++)] = itm; }
void put()(T itm) { assert(m_fill < m_buffer.length); move(itm, m_buffer[mod(m_start + m_fill++)]); }
void put(TC : T)(scope TC[] itms)
{
if( !itms.length ) return;
@ -391,18 +391,18 @@ struct FixedRingBuffer(T, size_t N = 0, bool INITIALIZE = true) {
assert(r.m_start >= m_start && r.m_start < m_buffer.length || r.m_start < mod(m_start+m_fill));
if( r.m_start > m_start ){
foreach(i; r.m_start .. m_buffer.length-1)
m_buffer[i] = m_buffer[i+1];
m_buffer[$-1] = m_buffer[0];
move(m_buffer[i+1], m_buffer[i]);
move(m_buffer[0], m_buffer[$-1]);
foreach(i; 0 .. mod(m_start + m_fill - 1))
m_buffer[i] = m_buffer[i+1];
move(m_buffer[i+1], m_buffer[i]);
} else {
foreach(i; r.m_start .. mod(m_start + m_fill - 1))
m_buffer[i] = m_buffer[i+1];
move(m_buffer[i+1], m_buffer[i]);
}
} else {
assert(r.m_start >= m_start && r.m_start < m_start+m_fill);
foreach(i; r.m_start .. m_start+m_fill-1)
m_buffer[i] = m_buffer[i+1];
move(m_buffer[i+1], m_buffer[i]);
}
m_fill--;
destroy(m_buffer[mod(m_start+m_fill)]); // TODO: only call destroy for non-POD T
@ -422,10 +422,20 @@ struct FixedRingBuffer(T, size_t N = 0, bool INITIALIZE = true) {
if( mod(m_start) >= mod(m_start+dst.length) ){
size_t chunk1 = m_buffer.length - m_start;
size_t chunk2 = dst.length - chunk1;
dst[0 .. chunk1] = m_buffer[m_start .. $];
dst[chunk1 .. $] = m_buffer[0 .. chunk2];
static if (isCopyable!T) {
dst[0 .. chunk1] = m_buffer[m_start .. $];
dst[chunk1 .. $] = m_buffer[0 .. chunk2];
} else {
foreach (i; 0 .. chunk1) move(m_buffer[m_start+i], dst[i]);
foreach (i; chunk1 .. this.length) move(m_buffer[i-chunk1], dst[i]);
}
} else {
dst[] = m_buffer[m_start .. m_start+dst.length];
static if (isCopyable!T) {
dst[] = m_buffer[m_start .. m_start+dst.length];
} else {
foreach (i; 0 .. dst.length)
move(m_buffer[m_start + i], dst[i]);
}
}
popFrontN(dst.length);
}
@ -507,7 +517,7 @@ struct FixedRingBuffer(T, size_t N = 0, bool INITIALIZE = true) {
@property bool empty() const { return m_length == 0; }
@property inout(T) front() inout { assert(!empty); return m_buffer[m_start]; }
@property ref inout(T) front() inout { assert(!empty); return m_buffer[m_start]; }
void popFront()
{