vibe-core/source/vibe/core/connectionpool.d
Sönke Ludwig 7e2d1dd038 Initial commit.
The library is able to support simple TCP servers in the current state. The API is still mostly compatible with mainline vibe.d, but the driver systen has been replaced by the eventcore library and sockets/files/timers/... are now structs with automatic reference counting instead of GC collected classes. The stream interfaces have been removed for now.
2016-03-01 20:30:42 +01:00

150 lines
4.2 KiB
D

/**
Generic connection pool for reusing persistent connections across fibers.
Copyright: © 2012-2016 RejectedSoftware e.K.
License: Subject to the terms of the MIT license, as written in the included LICENSE.txt file.
Authors: Sönke Ludwig
*/
module vibe.core.connectionpool;
import vibe.core.log;
import core.thread;
import vibe.core.sync;
//import vibe.utils.memory;
/**
Generic connection pool class.
The connection pool is creating connections using the supplied factory
function as needed whenever `lockConnection` is called. Connections are
associated to the calling fiber, as long as any copy of the returned
`LockedConnection` object still exists. Connections that are not associated
to any fiber will be kept in a pool of open connections for later reuse.
Note that, after retrieving a connection with `lockConnection`, the caller
has to make sure that the connection is actually physically open and to
reopen it if necessary. The `ConnectionPool` class has no knowledge of the
internals of the connection objects.
*/
class ConnectionPool(Connection)
{
private {
Connection delegate() m_connectionFactory;
Connection[] m_connections;
int[const(Connection)] m_lockCount;
FreeListRef!LocalTaskSemaphore m_sem;
debug Thread m_thread;
}
this(Connection delegate() connection_factory, uint max_concurrent = uint.max)
{
m_connectionFactory = connection_factory;
m_sem = FreeListRef!LocalTaskSemaphore(max_concurrent);
debug m_thread = Thread.getThis();
}
/** Determines the maximum number of concurrently open connections.
Attempting to lock more connections that this number will cause the
calling fiber to be blocked until one of the locked connections
becomes available for reuse.
*/
@property void maxConcurrency(uint max_concurrent) {
m_sem.maxLocks = max_concurrent;
}
/// ditto
@property uint maxConcurrency() {
return m_sem.maxLocks;
}
/** Retrieves a connection to temporarily associate with the calling fiber.
The returned `LockedConnection` object uses RAII and reference counting
to determine when to unlock the connection.
*/
LockedConnection!Connection lockConnection()
{
debug assert(m_thread is Thread.getThis(), "ConnectionPool was called from a foreign thread!");
m_sem.lock();
size_t cidx = size_t.max;
foreach( i, c; m_connections ){
auto plc = c in m_lockCount;
if( !plc || *plc == 0 ){
cidx = i;
break;
}
}
Connection conn;
if( cidx != size_t.max ){
logTrace("returning %s connection %d of %d", Connection.stringof, cidx, m_connections.length);
conn = m_connections[cidx];
} else {
logDebug("creating new %s connection, all %d are in use", Connection.stringof, m_connections.length);
conn = m_connectionFactory(); // NOTE: may block
logDebug(" ... %s", cast(void*)conn);
}
m_lockCount[conn] = 1;
if( cidx == size_t.max ){
m_connections ~= conn;
logDebug("Now got %d connections", m_connections.length);
}
auto ret = LockedConnection!Connection(this, conn);
return ret;
}
}
struct LockedConnection(Connection) {
private {
ConnectionPool!Connection m_pool;
Task m_task;
Connection m_conn;
debug uint m_magic = 0xB1345AC2;
}
private this(ConnectionPool!Connection pool, Connection conn)
{
assert(conn !is null);
m_pool = pool;
m_conn = conn;
m_task = Task.getThis();
}
this(this)
{
debug assert(m_magic == 0xB1345AC2, "LockedConnection value corrupted.");
if( m_conn ){
auto fthis = Task.getThis();
assert(fthis is m_task);
m_pool.m_lockCount[m_conn]++;
logTrace("conn %s copy %d", cast(void*)m_conn, m_pool.m_lockCount[m_conn]);
}
}
~this()
{
debug assert(m_magic == 0xB1345AC2, "LockedConnection value corrupted.");
if( m_conn ){
auto fthis = Task.getThis();
assert(fthis is m_task, "Locked connection destroyed in foreign task.");
auto plc = m_conn in m_pool.m_lockCount;
assert(plc !is null);
assert(*plc >= 1);
//logTrace("conn %s destroy %d", cast(void*)m_conn, *plc-1);
if( --*plc == 0 ){
m_pool.m_sem.unlock();
//logTrace("conn %s release", cast(void*)m_conn);
}
m_conn = null;
}
}
@property int __refCount() const { return m_pool.m_lockCount.get(m_conn, 0); }
@property inout(Connection) __conn() inout { return m_conn; }
alias __conn this;
}